The Folding Pathway of the KIX Domain.

نویسندگان

  • Francesca Troilo
  • Daniela Bonetti
  • Angelo Toto
  • Lorenzo Visconti
  • Maurizio Brunori
  • Sonia Longhi
  • Stefano Gianni
چکیده

The KIX domain is an 89-residues globular domain with an important role in mediating protein-protein interactions. The presence of two distinct binding sites in such a small domain makes KIX a suitable candidate to investigate the effect of the potentially divergent demands between folding and function. Here, we report an extensive mutational analysis of the folding pathway of the KIX domain, based on 30 site-directed mutants, which allow us to assess the structures of both the transition and denatured states. Data reveal that, while the transition state presents mostly native-like interactions, the denatured state is somewhat misfolded. We mapped some of the non-native contacts in the denatured state using a second round of mutagenesis, based on double mutant cycles on 15 double mutants. Interestingly, such a misfolding arises from non-native interactions involving the residues critical for the function of the protein. The results described in this work appear to highlight the diverging demands between folding and function that may lead to misfolding, which may be observed in the early stages of folding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Recognition by Templated Folding of an Intrinsically Disordered Protein

Intrinsically disordered proteins often become structured upon interacting with their partners. The mechanism of this 'folding upon binding' process, however, has not been fully characterised yet. Here we present a study of the folding of the intrinsically disordered transactivation domain of c-Myb (c-Myb) upon binding its partner KIX. By determining the structure of the folding transition stat...

متن کامل

Molecular Dynamics Simulation of Phosphorylated KID Post-Translational Modification

BACKGROUND Kinase-inducible domain (KID) as transcriptional activator can stimulate target gene expression in signal transduction by associating with KID interacting domain (KIX). NMR spectra suggest that apo-KID is an unstructured protein. After post-translational modification by phosphorylation, KID undergoes a transition from disordered to well folded protein upon binding to KIX. However, th...

متن کامل

Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of CREB: A Model for Activator:Coactivator Interactions

The nuclear factor CREB activates transcription of target genes in part through direct interactions with the KIX domain of the coactivator CBP in a phosphorylation-dependent manner. The solution structure of the complex formed by the phosphorylated kinase-inducible domain (pKID) of CREB with KIX reveals that pKID undergoes a coil-->helix folding transition upon binding to KIX, forming two alpha...

متن کامل

Molecular recognition by the KIX domain and its role in gene regulation

The kinase-inducible domain interacting (KIX) domain is a highly conserved independently folding three-helix bundle that serves as a docking site for transcription factors, whereupon promoter activation and target specificity are achieved during gene regulation. This docking event is a harbinger of an intricate multi-protein assembly at the transcriptional apparatus and is regulated in a highly...

متن کامل

Prepaying the entropic cost for allosteric regulation in KIX.

The kinase-inducible domain interacting (KIX) domain of the CREB binding protein (CBP) is capable of simultaneously binding two intrinsically disordered transcription factors, such as the mixed-lineage leukemia (MLL) and c-Myb peptides, at isolated interaction sites. In vitro, the affinity for binding c-Myb is approximately doubled when KIX is in complex with MLL, which suggests a positive coop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS chemical biology

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2017